All CVD Boron Nitride Encapsulated Graphene FETs with CMOS Compatible Metal Edge Contacts
Sources:nanopure | Release date:
2018-09-13
| Browsing volume:
Key words:All CVD Boron Nitride Encapsulated Graphene FETs with CMOS Compatible Metal Edge Contacts
We report on the fabrication and characterization of field effect transistors
(FETs) based on chemical vapor deposited (CVD) graphene encapsulated between
few layer CVD boron nitride (BN) sheets with complementary metal oxide
semiconductor (CMOS) compatible nickel edge contacts. Non-contact Tera-hertz
time domain spectroscopy (THz-TDS) of large-area BN/graphene/BN (BN/G/BN)
stacks reveals average sheet conductivity >1 mS/sq and average mobility of 2500
cm2 /Vs. Improved output conductance is observed in direct current (DC)
measurements under ambient conditions, indicating potential for radio-frequency
(RF) applications. Moreover, we report a maximum voltage gain of 6 dB from a
low frequency signal amplifier circuit. RF characterization of the GFETs yields
an fT x Lg product of 2.64 GHzμ m and an fMax x Lg product of 5.88 GHzμ m. This study presents for the first time THz-TDS usage
in combination with other characterization methods for device performance
assessment on BN/G/BN stacks. The results serve as a step towards scalable, all
CVD 2D material-based FETs for CMOS compatible future nanoelectronic circuit
architectures.
Previous:Boron Nitride Market Analysis
Relevant articles
- 2020-09-24 > Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111)
- 2020-09-24 > Hexagonal Boron Nitride as a Multifunctional Support for Engineering Efficient Electrocatalysts toward the Oxygen Reduction Reaction
- 2020-08-21 > Boron nitride nanotubes and nanosheets
- 2020-08-21 > A comprehensive analysis of the CVD growth of boron nitride nanotubes
- 2020-06-13 > One-dimensional hexagonal boron nitride conducting channel
- 2020-06-13 > Metal-Free Modified Boron Nitride for Enhanced CO2 Capture
- 2020-06-13 > Functionalizations of boron nitride nanostructures
- 2020-06-13 > Engineering spin defects in hexagonal boron nitride
- 2020-06-13 > Grain Dependent Growth of Bright Quantum Emitters in Hexagonal Boron Nitride
- 2020-06-13 > Process for manufacturing boron nitride agglomerates
Related products