Coupling Hexagonal Boron Nitride Quantum Emitters to Photonic Crystal Cavities
Sources:nanopure | Release date:
2020-06-13
| Browsing volume:
Key words:Coupling Hexagonal Boron Nitride Quantum Emitters to Photonic Crystal Cavities
Quantum photonics technologies require a scalable approach for the integration of nonclassical light sources with photonic resonators to achieve strong light confinement and enhancement of quantum light emission. Point defects from hexagonal boron nitride (hBN) are among the front runners for single photon sources due to their ultra-bright emission; however, the coupling of hBN defects to photonic crystal cavities has so far remained elusive. Here we demonstrate on-chip integration of hBN quantum emitters with photonic crystal cavities from silicon nitride (Si3N4) and achieve an experimentally measured quality factor (Q-factor) of 3300 for hBN/Si3N4 hybrid cavities. We observed 6-fold photoluminescence enhancement of an hBN single photon emission at room temperature. Our work will be useful for further development of cavity quantum electrodynamic experiments and on-chip integration of two-dimensional (2D) materials.
Relevant articles
- 2020-09-24 > Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111)
- 2020-09-24 > Hexagonal Boron Nitride as a Multifunctional Support for Engineering Efficient Electrocatalysts toward the Oxygen Reduction Reaction
- 2020-08-21 > Boron nitride nanotubes and nanosheets
- 2020-08-21 > A comprehensive analysis of the CVD growth of boron nitride nanotubes
- 2020-06-13 > One-dimensional hexagonal boron nitride conducting channel
- 2020-06-13 > Metal-Free Modified Boron Nitride for Enhanced CO2 Capture
- 2020-06-13 > Functionalizations of boron nitride nanostructures
- 2020-06-13 > Engineering spin defects in hexagonal boron nitride
- 2020-06-13 > Grain Dependent Growth of Bright Quantum Emitters in Hexagonal Boron Nitride
- 2020-06-13 > Process for manufacturing boron nitride agglomerates
Related products